IV B.Tech - I Semester - Regular / Supplementary Examinations November 2016

ADVANCED STRUCTURAL ENGINEERING (CIVIL ENGINEERING)

Duration: 3 hours
Max. Marks: 70
Answer any FIVE questions. All questions carry equal marks

1. What is the basic concept of pre-stressed concrete with examples? Also explain the various types of pre-stressing.

14 M
2. Explain in detail - Importance of site investigation in bridge design.

14 M
3. A road bridge deck consists of a reinforced concrete slab continuous over Tee beams spaced 2 m apart and cross girders spaced at 5 m centers. Thickness of wearing coat $=100 \mathrm{~mm}$. Type of loading is IRC Class AA tracked vehicle. Using M-25 grade concrete and $\mathrm{Fe}-415$ HYSD bars design the R.C slab and draw the cross section and longitudinal section of the slab.

14 M
4. Design a R.C.C Tee beam girder for a national highway bridge to suit the following data:
Effective span of girders= 16 m
Page 1 of 2

Foot path - 1 m on either side
Live load = I.R.C. Class - AA tracked vehicle
Thickness of wearing coat $=80 \mathrm{~mm}$, number of main girders $=4$
Concrete $=\mathrm{M}-20$ grade
Steel $=\mathrm{Fe}-415$ grade of steel
Spacing of cross girders $=4 \mathrm{~m}$, spacing of main girders $=2.5 \mathrm{~m}$

14 M
5. Plan and design an overhead water tank of capacity $1,20,000$ liters. Circular and having a Domed top and a flat bottom if the elevation of the tank is 16 m above ground level. Assume suitable stresses and other data.

14 M
6. Briefly explain the different types of bracing system used in Transmission Line tower members.

14 M
7. Derive the element stiffness matrix for a two dimensional beam element using displacement based FEM procedure.

14 M
8. Describe the provisions adopted for ductility of columns subjected to bending and axial load as per IS: 13920:1993.

14 M

Page 2 of 2

